A Preconditioning Strategy Applicable To A Family Of IDR(s) Methods For Reduction Of Computational Cost

Seiji Fujino

Research Institute for Information Technology, Kyushu University, Japan

Yusuke Onoue

Graduate School of Information Science and Electrical Engineering, Kyushu University, Japan

We consider to solve a large non-singular linear system of equations,

Ax = b

where A is a given nonsymmetric coefficient $(N \times N)$ -matrix, and x, b are a solution vector and right-hand side vector of order N, respectively. Krylov subspace of order n is spaned by

$$K_n(A;r_0) := \operatorname{span} r_0, Ar_0, \cdots, A^{n-1}r_0,$$

where $r_0 (= b - Ax_0)$ is an initial residual vector. As known well, Krylov subspace methods are effective iterative methods for solving large linear systems of equations. Recently, IDR(s) method based on IDR (Induced Dimension Reduction) Theorem[4] was proposed by P. Sonneveld and M.B. van Gijzen[2]. Moreover, generalization and extension of IDR Theorem was studied by G. Sleijpen[1] and M. Tanio[3].

In a family of IDR(s) methods, computation of multiplication of transpose matrix P^T and a vector is needed commonly at every iteration. Here P is a dense matrix in $\mathbb{R}^{N \times s}[2]$. Computational cost of multiplication of P^T and a vector dominates in the algorithm of several IDR(s) methods, and the more parameter s, the more computational cost. Therefore it is an issue how we construct a structure of dense matrix P.

In this article, as one of preconditioning techniques, we propose a structure of a dense matrix P composed with divided s column vectors of size $\lfloor N/s \rfloor \times 1$. Here $\lfloor \rfloor$ denotes the so-called Gauss symbol. We refer to this partially dense matrix as Slim Dense (abbreviated as **S_Dense**) matrix. As a result of adoptation of this preconditioning strategy, computational cost of a family of IDR(s) methods can be reduced.

Table 1 shows the convergence of GIDR(s, L = 2) method for dense and S_Dense matrices P. In this Table, " $s_{opt.}$ " means optimum parameter s in view of CPU time." *ave. time*" means average CPU time per one iteration in milli-seconds. "ratio" means ratio of CPU time of GIDR(s, L = 2) method using S_Dense matrix to that of GIDR(s, L = 2) method using dense matrices P. The bold figure means the least CPU time of GIDR(s, L = 2) method of dense and S_Dense matrices P for each matrix. From Table 1, we can see that the proposed preconditioning strategy using S_Dense matrix P is very effective for improvement of efficiency of GIDR(s, L) method.

References

 Sleijpen, G.L.G., Sonneveld, P., van Gijzen, M.B. : Bi-CGSTAB as an Induced Dimension Reduction Method, Depart. of Applied Math. Anal., TR08-07(2008), Delft University of Technology.

matrix	ave. nnz	structure of ${\cal P}$	$s_{opt.}$	itr.	time [sec.]	ratio	ave. time $[{\rm msec.}]$
2*language	2* 3.047	dense	1	44	1.19	1.0	27.068
		S_Dense	3	40	1.07	0.901	26.825
2*epb3	2* 5.479	dense	2	2748	11.25	1.0	4.097
		S_Dense	5	2424	9.91	0.881	4.090
2 [*] memplus	2* 7.104	dense	4	230	0.26	1.0	1.130
		S_Dense	7	192	0.22	0.842	1.141
2^* add 20	2* 7.231	dense	3	152	0.027	1.0	0.178
		S_Dense	6	140	0.025	0.926	0.179
2*matrix_9	2*20.512	dense	6	1960	25.30	1.0	12.910
		S_Dense	6	1932	22.36	0.884	11.576
2*xenon2	2*24.556	dense	4	1450	32.36	1.0	22.318
		S_Dense	5	1356	28.95	0.895	21.350
2*poisson3Db	2*27.737	dense	4	380	6.35	1.0	16.721
		S_Dense	5	360	5.81	0.915	16.144
2*sme3Dc	2*73.344	dense	7	3456	6.76	1.0	17.870
		S_Dense	8	3366	58.32	0.944	17.327
2*raefsky2	2*90.550	dense	8	378	0.35	1.0	0.931
		S_Dense	8	378	0.33	0.957	0.892

Table 1: Convergence of GIDR(s, L = 2) method of dense and S_Dense matrices P.

- [2] Sonneveld, P., van Gijzen, M.B.: IDR(s): a family of simple and fast algorithms for solving large nonsymmetric linear systems, SIAM J. Sci. Comput., Vol. 31, No.2, 1035-1062, 2008.
- [3] Tanio, M., Sugihara, M., GIDR(s, L): Generalized IDR(s), Proceeding of the 2008 annual meeting of the JSIAM, pp.411-412, 2008.
- [4] Wesseling, P., Sonneveld, P.: Numerical Experiments with a Multiple Grid-and a Preconditioned Lanczos Type Methods, Lecture Notes in Math., Springer, No.771, pp.543-562, 1980.