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We consider to solve a large non-singular linear system of equations,

Ax = b

where A is a given nonsymmetric coefficient (N × N)-matrix, and x, b are a solution

vector and right-hand side vector of order N , respectively. Krylov subspace of order n is

spaned by

Kn(A; r0) := spanr0, Ar0, · · · , An−1r0,

where r0(= b−Ax0) is an initial residual vector. As known well, Krylov subspace methods

are effective iterative methods for solving large linear systems of equations. Recently,

IDR(s) method based on IDR (Induced Dimension Reduction) Theorem[4] was proposed

by P. Sonneveld and M.B. van Gijzen[2]. Moreover, generalization and extension of IDR

Theorem was studied by G. Sleijpen[1] and M. Tanio[3].

In a family of IDR(s) methods, computation of multiplication of transpose matrix P T

and a vector is needed commonly at every iteration. Here P is a dense matrix in RN×s[2].

Computational cost of multiplication of P T and a vector dominates in the algorithm

of several IDR(s) methods, and the more parameter s, the more computational cost.

Therefore it is an issue how we construct a structure of dense matrix P .

In this article, as one of preconditioning techniques, we propose a structure of a dense

matrix P composed with divided s column vectors of size ⌊N/s⌋× 1. Here ⌊⌋ denotes the

so-called Gauss symbol. We refer to this partially dense matrix as Slim Dense (abbre-

viated as S Dense) matrix. As a result of adoptation of this preconditioning strategy,

computational cost of a family of IDR(s) methods can be reduced.

Table 1 shows the convergence of GIDR(s, L = 2) method for dense and S Dense

matrices P . In this Table, ”sopt.” means optimum parameter s in view of CPU time.

”ave. time” means average CPU time per one iteration in milli-seconds. “ratio” means

ratio of CPU time of GIDR(s, L = 2) method using S Dense matrix to that of GIDR(s,

L = 2) method using dense matrices P . The bold figure means the least CPU time of

GIDR(s, L = 2) method of dense and S Dense matrices P for each matrix. From Table

1, we can see that the proposed preconditioning strategy using S Dense matrix P is very

effective for improvement of efficiency of GIDR(s, L) method.

References

[1] Sleijpen, G.L.G., Sonneveld, P., van Gijzen, M.B. : Bi-CGSTAB as an Induced Di-

mension Reduction Method, Depart. of Applied Math. Anal., TR08-07(2008), Delft

University of Technology.



Table 1: Convergence of GIDR(s, L = 2) method of dense and S Dense matrices P .

matrix ave. nnz structure of P sopt. itr. time [sec.] ratio ave. time [msec.]

2*language 2* 3.047 dense 1 44 1.19 1.0 27.068

S Dense 3 40 1.07 0.901 26.825

2*epb3 2* 5.479 dense 2 2748 11.25 1.0 4.097

S Dense 5 2424 9.91 0.881 4.090

2*memplus 2* 7.104 dense 4 230 0.26 1.0 1.130

S Dense 7 192 0.22 0.842 1.141

2*add20 2* 7.231 dense 3 152 0.027 1.0 0.178

S Dense 6 140 0.025 0.926 0.179

2*matrix 9 2*20.512 dense 6 1960 25.30 1.0 12.910

S Dense 6 1932 22.36 0.884 11.576

2*xenon2 2*24.556 dense 4 1450 32.36 1.0 22.318

S Dense 5 1356 28.95 0.895 21.350

2*poisson3Db 2*27.737 dense 4 380 6.35 1.0 16.721

S Dense 5 360 5.81 0.915 16.144

2*sme3Dc 2*73.344 dense 7 3456 6.76 1.0 17.870

S Dense 8 3366 58.32 0.944 17.327

2*raefsky2 2*90.550 dense 8 378 0.35 1.0 0.931

S Dense 8 378 0.33 0.957 0.892
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