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Reactive transport models lead to a set of coupled partial differential equations, coupled with
algebraic equations. The system may be very large, as the number of unknowns is the number of
grid points times the number of chemical species. In Amir and Kern [1] a method was introduced
where the chemical equations are eliminated, and a set of transport equations are solved, with
a source term implicitly representing the effect of chemistry. The resulting problem is solved by
the Newton–Krylov method, where the linear system is solved by an iterative method. It was
seen that an efficient preconditioning was a crucial component of the method. However, finding
a preconditioner is difficult, as no matrix is constructed in the Newton–Krylov method, and
one would like to preserve the decoupling between transport and chemistry that is the main
advantage of the formulation in Amir and Kern [1].

In this work, we consider a simplified model with one species undergoing a sorption reaction,
given by a known equilibrium isotherm. This choice is motivated by the facts that the resulting
mathematical problem has the same structure as that considered in the more general multicom-
ponent model, that it is amenable to a more complete analysis, and that it can still be seen as
representative of a physically relevant model

The model couples the aqueous concentration c of the chemical species, with its fixed concentra-
tion c̄. he mathematical model given by writing the mass balance equation, and the adsorption
relation is:

ω∂tc+ ω∂tc̄−∇.(D∇c− qc) = 0

c̄ = ψ(c)
in Ω× [0, T ] (1)

with appropriate initial and boundary conditions. Here Ω is a bounded domain inRd, 1 ≤ d ≤ 3,
[0, T ] a fixed time interval, q is the Darcy velocity, ω is the porosity and D is the diffusion–
dispersion tensor. The sorption isotherm ψ in equation (1) will be taken as the Langmuir
isotherm:

ψ(c) = σ
Kc

1 +Kc
, (2)

where σ and K are two constants.

After discretization, the following non-linear algebraic system is obtained:

ACn+1 = gn −MC̄n+1

C̄n+1 = ψ(Cn+1),
(3)
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Figure 1: Field of values of the Jacobian matrix, for different mesh sizes

where A is a stiffness matrix representing the spatially discretrized transport operator, M a
(diagonal) mass matrix, and gn is a know term that lumps together the boundary conditions
and the initial conditions. For simplicity, in the following we drop the time superscripts from
the notation.

It is possible to eliminate one of the unknowns in the previous non-linear system. It turns out
that the most efficient alternative is to eliminate the aqueous concentration C (this assumes
that one can efficiently invert the transport operator), which leads to the new system:

C̄ = ψ(A−1(g −MC̄)). (4)

Even though this system is written in fixed–point form, we still want to use Newton’s method
for its solution. As the function defined in (4) involves A−1, it is not practical to compute the
full Jacobian, and we turn to a Newton–Krylov method, as this only requires the action of the
Jacobian on a vector, and this in turn means solving a transport problem over one time step.

We investigate preconditioners that respect the block structure inherent in system (3). The
simplest choices are to use either block Jacobi, or block Gauss–Seidel preconditioners. It is
worthwhile to note that the Jacobian of the function in (4) is the same as that obtained by taking
the Schur complement of C in the linearized coupled system, using Gauss-Seidel preconditioning.

It is possible to compute the eigenvalues of the various matrices. We denote by µj , j = 1, N the
eigenvalues of the (generalized) eigenproblem Aw = µMDkw (the µj are real positive numbers
becauseM was assumed diagonal andDk is diagonal and positive, if ψ is an increasing function).
We assume that, for large N , µj behaves as 1/h

2, where h is a measure of the mesh-size. This is
a natural assumption since the matrix A approximates a diffusion operator. For Gauss–Seidel
preconditioning, and also for the matrix obtained after elimination of C, the eigenvalues of the

preconditioning matrix are of the form λj = 1+
1

µj
, j = 1, . . . , N , with the addition of 1, with

multiplicity N , for Gauss–Seidel.

As the matrix in (the linearization of) (3) is non-symmetric, the performance of GMRES is theo-
retically not determined by the eigenvalues. Nevertheless, the fact that they are tightly clustered
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around 1 gives a good indication that convergence of GMRES will be mesh-independent. This
is confirmed by the behavior of the field of values, which for the moment we have only been able
to approximate numerically. Figure 1 shows the field of values for the Jacobian of (4)for several
mesh sizes. The field of values is the inside of the dashed curves, and one sees it is bounded
away from zero, independently of h.

We have compared the performance of the Newton–Krlyov method, with different precondition-
ers. In the tables below, “None” refers to no preconditioning, “BJ” and “GS” refer to block
Jacobi (resp. block Gauss–Seidel) preconditioning and “Elim. of C” means using (4)

h h/2 h/4 h/8 h/16
Mesh / PC NNI NLI NNI NLI NNI NLI NNI NLI NNI NLI

None 3 104 3 167 3 275 3 453 — —
BJ 3 68 3 67 3 63 3 60 3 62
BGS 3 48 3 48 3 47 3 45 3 44

Elim. of C 3 41 3 41 3 41 3 40 3 40

Table 1: Performance of preconditioners, constant forcing term: NNI is Number of Nonlinear
Iterations, NLI is Number of Linear Iterations

It can be seen that when using non preconditioner, the number of linear iterations grows quickly
when the mesh is refined. When a preconditioner where transport is eliminated is used, the
number of linear iterations becomes almost independent of the mesh, as predicted by the spectral
analysis.
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