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We consider the Block Cimmino projection method for the solution of the linear system of
equations Ax = b, where A is a nonsingular large sparse unsymmetric matrix of order n. The
blocks are obtained by partitioning the system into p strips of rows, with p ≤ n, as in:
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The Block Cimmino method projects the current iterate simultaneously onto the manifolds
corresponding to the strips, and takes a convex combination of all the resulting vectors. Our
aim is to focus on preprocessing and partitioning strategies of the original system to bring it to
the form (1).

If the matrixA is ill conditioned then there are some linear combinations of rows that are almost
equal to zero and, as mentioned by [2], these linear combinations may occur inside the blocks or
across the blocks after row partitionings of the form (1). Assuming that the projections in the
Block Cimmino algorithm are computed exactly on the subspaces, then the rate of convergence
of the Block Cimmino algorithm depends only on the conditioning across the blocks. If we
consider additionally Conjugate Gradient acceleration of the Block Cimmino method, as in
[1, 2], the convergence behaviour of the resulting method is directly linked to the spectrum of
the n×n matrix ERJ formed as the sum of the previously mentioned projections, and given by

ERJ =

p
∑

i=1

Ai
T
(

AiAi
T
)−1

Ai , (2)

assuming, for simplicity, that the block-rows Ai have full row rank. An efficient implementation
of Block Cimmino requires a combination of a robust method for computing the projections
and a partitioning strategy that minimizes the ill-conditioning across the blocks.

If the block rows Ai are nearly mutually orthogonal, i.e. AA
T is strongly block-diagonally

dominant, we can expect that the method will converge very quickly, if the projections are
computed accurately. Conversely, the structure of AA

T tells us about the orthogonality of the
subspaces represented by block partitions of A. In all our experiments we first normalize the
matrix AA

T using MC77 [5] so that the 2-norms of the rows and columns are close to one. Then
the entries in AA

T correspond to the cosine of the principal angle between every pair of rows,
and we may expect that if such a cosine is relatively small the corresponding pair of rows are
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almost orthogonal. That is, if the block (i, j)th entry of the scaled AA
T is close to zero then the

subspaces corresponding to the blocks Ai and Aj can be considered to be orthogonal. If AA
T

is block tridiagonal, the blocks of A are such that the even numbered blocks are orthogonal
as are also the odd-numbered blocks. Thus if we solve the projected subproblems accurately
(using say a direct method) then we also solve the subproblems corresponding to the odd and

even numbered blocks accurately. The partition of A is thus of the form [A] =
[

B1
T

B2
T

]T
,

where B1 =

{

⋃

i

Ai / i odd

}

and B2 =

{

⋃

i

Ai / i even

}

. Such a partitioning is called a two-

block partitioning. We denote by m1 and m2 the number of rows in B1 and B2 respectively. It
was shown by [4] that, with such a two-block partitioning, the spectrum of matrix ERJ is

λk = 1 + cosΨk

λk = 1− cosΨk−m2

λk = 1

k = 1, . . . ,m2

k = m2 + 1, . . . , 2m2

k = 2m2 + 1, . . . , n

where {Ψk}
m2

1
are the principal angles between R(B1

T ) and R(B2
T ).

The main idea behind the so called two-block partitioning strategy is to exploit structural
orthogonality between the subspaces R(Ai

T ) defined by the partitioning (1). This structural
orthogonality can be analysed on the basis of the sparsity pattern of the normal equations
matrix AA

T . The idea is to find a permutation to transform the normal equations matrix
AA

T into block tridiagonal form. That is we determine a permutation matrix P such that
B = PAA

T
P

T is in block tridiagonal form using an implementation of algorithm of [3]. We
then use this permutation to solve the row-wise permuted system of equations

PAx = Pb (3)

using the block Cimmino algorithm.

The main problem with this first preprocessing strategy for general sparse matrices, is that the
block tridiagonal structure has diagonal blocks with very differing sizes leading to a partitioning
with a bad degree of parallelism because of unbalanced tasks in the block-row projections.

In our second preprocessing strategy, we take into account the numerical values in the matrix
AA

T , and do not enforce strict orthogonality between every second block of rows. We drop small
entries of AA

T and by using the relationship to principal angles can relax the orthogonality
condition in a controlled way in an attempt to obtain much better parallelism compared to the
previous strategy. We thus only keep nonzero entries above a given tolerance and permute the
resulting filtered matrix into block tridiagonal form using the Cuthill-McKee algorithm and use
the row partitioning defined by this block tridiagonal structure to solve (3).

Of course, since numerical values have been dropped from the normal equations matrix, the
resulting partition will not provide two subsets of structurally orthogonal blocks of rows, but,
if the values dropped are sufficiently small, we may expect that the numerical properties of the
resulting iteration matrix will be relatively close to that of the “strict” two-block partitioning
case. Additionally, since the filtered matrix has less entries than the original normal equations
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matrix, the resulting block tridiagonal permuted matrix will normally have a smaller bandwidth
than B and this may help to define a partitioning on A with more blocks, better balanced
projections, and a higher degree of parallelism.

To illustrate this preprocessing strategy, we show preliminary results obtained with the bmw3 2

matrix (of size N = 227362) from the Tim Davis collection. The original matrix, before prepro-
cessing, has the symmetric pattern shown in the left subplot above, in which there is no evident
structural orthogonality between sets of rows.

We perform some runs on a 24 (Intel i7) cores parallel machine, with a generic partitioning
into 24 equal sized blocks. The Block Cimmino method needs then 915 iterations to reach a
scaled residual value of the order 10−7. It requires 5.46 sec for the analysis, 2.41 sec for the
factorization of the augmented systems and 63.25 sec for the iterations.

Following the second preprocessing strategy, we filter AA
T matrix under the value 0.1, which

corresponds to the cosine of an angle of 84◦, and we obtain the pattern in the right subplot after
Cuthill-McKee and a reduction of nonzero entries in AA

T of 88%. With this block tridiagonal
structure, we can define 18 almost balanced partitions, the biggest one of size 16129 rows and
the smallest of 11062 rows. The Block Cimmino method needs then 296 iterations to converge
to the same level, with 7.19 sec for the analysis, 3.29 sec for the factorization, 24.62 sec for the
iterations, and with 2.48 sec for the extra work in the preprocessing.

We intend to develop and compare the benefits of such strategies on parallel architectures,
different test examples and also with variants where we may drop entries in A in combination
with entries in AA

T

References

[1] M. Arioli, I. S. Duff, J. Noailles, and D. Ruiz, (1992), A Block Projection Method For Sparse Matrices,
SIAM J. Sci. Stat. Comput., 47–70.

[2] R. Bramley and A. Sameh, (1990), Row projection methods for large nonsymmetric linear systems, Tech.
Rep. 957, Center for Supercomputing Research and Development, University of Illinois, Urbana, IL. Also,
SISSC, Vol. 13, January 1992.

[3] E. Cuthill and J. McKee, (1969), Reducing the bandwidth of sparse symmetric matrices, in Proceedings
24th National Conference of the Association for Computing Machinery, New Jersey, Brandon Press, 157–172.

[4] T. Elfving, (1980), Block-iterative methods for consistent and inconsistent linear equations, Numer. Math.,
35, 1–12.

[5] D. Ruiz, (2001), A scaling algorithm to equilibrate both row and column norms in matrices, Tech. Rep.
RAL-TR-2001-034, Rutherford Appleton Laboratory.

3


