A fast GPU Implementation of the Deflated Preconditioned Conjugate
Gradient method

List of authors:
C. Vuik !
R. Gupta 2
C.W.J. Lemmens >

Large sparse linear systems are mostly solved by Preconditioned Krylov Methods combined with
some form of coarse grid acceleration. We consider the Deflated Preconditioned Conjugate Gra-
dient Method. Most of the important building blocks of this algorithm could be optimized for
execution on parallel architectures. Recently, with the advent of General Purpose Computing
on the Graphical Processing Unit (GPU) it is possible to achieve 10 — 100 times reduction in
computing times. However, many preconditioners involved in the solution of the systems of
interest do not run optimally on the GPU. A large class of preconditioners is based on incom-
plete Cholesky decompositions. Solving the lower and upper triangulars system is inherently
sequential. So the challenge is how to make these preconditioners suitable for the GPU which
can only be used with parallel methods. In this paper we show that it is possible to achieve a
20 fold speedup for a combination of suitable building blocks.

We use two levels of Preconditioning with the CG method to solve a linear system [1]. Our
system arises from the discretization of the Pressure Correction Equation. This equation is the
most time-consuming step in the solution of the Incompressible Navier-Stokes Equation using
the Level Set Method. This method, as suggested in [2], is of interest in modeling bubbly flows.
The Partial Differential Equations describing the Pressure Correction have been discretized
through the use of finite differences. The linear system is of the form

Ax =b,A e R™", (1)
where n is the number of degrees of freedom. We assume that A is symmetric positive definite.

With the advent of the Component Unified Device Architecture (CUDA) paradigm of com-
puting available on NVIDIA GPU devices, it has become easier to write numerical software.
Characteristic features of GPU devices are: one should use vectorizable algorithms (fine scale
parallelism), reuse the fast shared memory as much as possible, if statements etc. lead to severe
degradation of the performance, minimize communication between CPU and GPU, and the
obtained accuracy and error checking is less on the GPU as compared to the CPU.

We perform our experiments using 5 point Laplacian matrix resulting from a 2D square grid.
The same experiments have been done for a matrix originating from a two phase flow. The

'Delft University of Technology, Faculty of EEMCS, Mekelweg, Delft, The Netherlands
2Delft University of Technology, Faculty of EEMCS, Mekelweg, Delft, The Netherlands
3Delft University of Technology, Faculty of EEMCS, Mekelweg, Delft, The Netherlands

methods below have been implemented and tested in the given order. We start with the stan-
dard CG method, add a standard preconditioner (BIC) and combine it with a second level
preconditioner (deflation). After that we replace the standard preconditioner by a parallel
preconditioner and optimize the code for the GPU which leads to the fastest method: DIPCG2.

CGVYV) Conjugate Gradient - Vanilla Version,

CGBIC) Conjugate Gradient - Block Incomplete Cholesky Preconditioning,

DPCG) Conjugate Gradient - Deflation and Block Incomplete Cholesky Preconditioning,

(
(
(
(

DPCG1) Conjugate Gradient - Deflation (Optimized - Level 1) and Block Incomplete
Cholesky Preconditioning,

(DIPCG1) Conjugate Gradient - Deflation (Optimized - Level 1) and Incomplete Poisson
Preconditioning,

(DPCG2) Conjugate Gradient - Deflation (Optimized - Level 2) and Block Incomplete
Cholesky Preconditioning,

(DIPCG2) Conjugate Gradient - Deflation(Optimized - Level 2) and Incomplete Poisson
Preconditioning.

We use a Q9650 Intel Quad Core CPU however we only utilize a single core. We optimize
it to use SSE instructions, unrolling loops and vectorizing using compiler switches. We also
use the Meschach Blas Library for the Blas routines on the CPU. The GPU we use is a Tesla
C1060 from NVIDIA. We use CUDA for writing our code on the GPU. The CUBLAS and
M AGM A libraries are used when Blas functions are needed in the GPU version. Table 1 shows
the results for a 512 x 512 grid. Note that the combination of the IP preconditioner and the
deflation approach leads to a low number of iterations. Furthermore, after optimization, the
gain in computing time is around a factor 20. For further details we refer to [3].

Execution Times || No. of Iterations

Code Version || CPU GPU || CPU GPU
CGVV 5.9 0.5004 652 649
CGBIC 5.1 5.59 327 327
DPCG 110.5 4.45 42 42
DPCG1 1.6 1.01 41 41
DIPCG1 1.7 0.25 49 49
DPCG2 1.6 0.89 41 41
DIPCG2 1.8 0.10 49 49

Table 1: Comparison GPU vs. CPU. Number of iterations required for convergence and execu-
tion times.

References

[1] J.M. Tang, C. and Vuik, Efficient Deflation Methods applied to 3-D Bubbly Flow Problems
Electronic Transactions on Numerical Analysis, 26:330-349, 2007.

[2] S.P. Van der Pijl, A. Segal, C. Vuik, and P. Wesseling, A mass conserving Level-Set Method
for modelling of multi-phase flows International Journal for Numerical Methods in Fluids,
47:339-361, 2005.

[3] R. Gupta, C. Vuik, and C.W.J. Lemmens, GPU Implementation of Deflated Preconditioned
Conjugate Gradient submitted

