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This talk will address the accelerated solution of the time independent Boltzmann equation for
modeling neutron transport in one-dimensional spherical geometry using the discrete ordinates
method on general purpose graphics processing unit (GPGPU). These have several hundred
cores and offer potential for very high performance. However, software for GPGPU has to
be reformulated to take advantage of the massive parallelism. The transport sweep is a key
computational kernel but is difficult to parallelize. Mathematically, the sweep operation is
equivalent to the solution of a sparse lower triangular system. Closer examination of the sparsity
pattern (see Figure 1 below) suggests the sweep operation can be decomposed as a sequence
of solutions to narrow banded lower triangular matrices and sparse matrix multiplies of the
off-diagonal entries. Zhang [3] et al. considered the solution of a tridiagonal system on GPGPU
using a hybrid algorithm of cyclic reduction, parallel cyclic reduction, and recursive doubling.
The cyclic reduction technique can also be used on solving block lower bidiagonal or narrow
banded lower triangular systems. We present results on the implementation of cyclic reduction
for solving block bidiagonal systems on GPGPU and multi-core machines and the overall impact
on the solution of the neutron transport equation.

The multigroup approximation partitions the energy space into G discrete groups and solves
the subproblem for one group at a time. The discrete ordinates (SN ) method is a finite element
collocation scheme in angle. By representing the scattering source in a Legendre expansion, the
resulting equation can be written as [2, Chapter 1]
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where the angular flux ψm ≡ ψ(r, µm) and moments of the angular flux (φℓ) are computed by
the quadrature formula

φℓ(r) = 2π

∫

1

−1

Pℓ(µ)ψ(r, µ)dµ ≈

N
∑

m=1

Pℓ(µm)ψmwm.

With an appropriate spatial discretization, the solution of Eq. (1) with a given Qm can proceed
as a wavefront or sweep algorithm [2]. Starting from the inflow boundary condition, the solution
in each cell depends upon the entering flux from the upwind inflow direction of the adjacent
neighboring cell. When expressed as matrix operations, Eqs. (1) and (2) can be written as

LΨ = Q, Q = MSΦ+ q, Φ = DΨ (3)

where L is the streaming-plus-collision transport operator, M is the moment-to-discrete opera-
tor, S is the scattering operator and D maps the angular flux to Legendre moments. Note that
L−1 represents a transport sweep. With the appropriate ordering of the variables, the operator
L can be represented as a sparse lower triangular matrix. Figure 1 is a sparsity plot of the
transport operator. In the neutron transport community, Eq. (3) is commonly solved using a
fixed-point iteration known as source iteration

Φk+1 = DL−1(MSΦk +Q). (4)

Source iteration is stable but can suffer from slow convergence if the material is highly scattering
and optically thick. Krylov methods, such as GMRES or BICGSTAB, may also be used to solve
the system

(I−DL−1MS)Φ = Q̃, Q̃ = DL−1Q . (5)

The transport sweep operation L−1 is a key computational kernel since the action of the matrix-
vector multiply is computed as needed. The main insight is that the transport sweep L−1 can
be computed as a sequence of solutions to narrow banded lower triangular systems and sparse
matrix multiplications of the off-diagonal entries.

Cyclic reduction (CR) [1] for solving a block bidiagonal lower triangular system exposes more
parallelism but performs more work. For a system with n blocks, each a k×k matrix, CR takes
2 log2(n) stages, and O(3nk3+6nk2) operations, whereas the classical sequential (CS) algorithm
requires n stages and O(3nk3) operations. If there are (n/2) processors, the ratio of time for
CR over CS is roughly (3k+2) log2(n)/n. The greater parallelism coupled with the availability
of more computational cores makes GPGPU approach plausible. At each forward stage, the
method reduces (in parallel) the system to another block bidiagonal system of variables with
even index. On the backward stage, once the even variables are known, the odd variables can
be computed in parallel. We illustrate the method on a 6× 6 problem,
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The method orders the odd and even variables separately and then forms the Schur’s comple-
ment for the even variables,
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The reordering can be recursively repeated on the smaller system. Once the even variables are
known, the odd variables can be computed in parallel as

x1 = b−1
1
d1, x3 = b−1

3
(d3 − a3x2), x5 = b−1

5
(d5 − a5x6). (8)
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Figure 1: Sparsity pattern of transport sweep operator with 4 quadrature directions and 20
spatial cells and one moment.
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