Algebraic Multigrid using Energy-Minimization: a general framework to
develop intergrid transfer operator.
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The repeated solution of sparse linear systems is often a key computational bottleneck for
large-scale computer simulations and development of highly scalable preconditioner must be
addressed on the path of exascale computing. With this aim in view, we focus on multigrid
methods which are among the most scalable algorithms in solving linear systems arising from
the discretization of partial differential equations (PDEs). The basic idea of multigrid methods
is to use coarse grid correction to handle the error which have not been eliminated by the
smoothing process. Algebraic multigrid (AMG) methods construct their hierarchy of coarse
systems directly from the initial matrix. The key to designing an effective AMG algorithm
is to construct coarse grids and intergrid operators to obtain a good characterization in the
coarse levels of error not eliminated by the smoother on the finest level. Our main intention is
to extend the applicability of AMG methods to challenging problems like systems of PDEs by
defining a general framework for the generation of intergrid transfer operator.

In [1], the authors propose a set of objectives to obtain an efficient prolongation operation
motivated by both the convergence theory and their practical experience. They also present
the Smoothed Aggregation (SA) method as an attempts to satisfy this requirements. In SA, the
knowledge of near-kernel components are explicitly used to define an intergrid operator which
allows an accurate representation of this specific modes on the coarser grid and the smoothing
of the prolongator aims to reduce its energy. SA AMG has been applied successfully in many
application domains. However, the cost to apply SA can grow unacceptably for systems of
PDEs and for large number of near-kernel components. This issue becomes more pronounced
for stretched meshes, large material variation, and higher dimensionality.

Considering the same set of objectives, we have developed algorithms for generating AMG
grid transfers based on a more general interpolation strategy. In our energy-minimization
algorithm, each column of the grid transfer operator P is minimized in an energy-based norm
while enforcing two types of constraints: a defined sparsity pattern and preservation of specified
modes in the range of P. The resulting constrained optimization problem can be solved by using
Krylov based methods. While related to the method proposed in [2], our algorithm pays close
attention to the compression of near-kernel information in order to maintain low preconditioner
cost. One of the main advantages of the approach is that it is flexible, allowing for arbitrary
coarsenings, unrestricted sparsity patterns, straightforward long distance interpolation, and
general use of constraints, either user-defined or auto-generated.
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I will present a use case of the energy minimization algorithm on 3D linear elasticity. For
this specific problem, we take advantage of the flexibility of energy-minimization algorithm to
compress the information given by the near-kernel components and reduce the number of degree
of freedom on coarse grids.

The algorithms presented here will be at the heart of the next multigrid solver of the Trilinos
project [3, 4]. As future application will require increasingly complex and finely tuned precon-
ditioning methods, I will discuss some aspects of the code design, which was carefully created
to maximize the new algorithm’s flexibility.
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