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We propose a new method for constructing a preconditioning matrix M to accelerate the solution
of the system

Ax = b,

when using Krylov-based iterative methods. The coefficient matrix A is large and sparse and
we assume it is irreducible, that is it cannot be permuted to block triangular form. If it is
reducible, then we will apply our algorithms to the irreducible blocks on the diagonal.

The proposed method is based on a hierarchical decomposition of the associated digraph into
strongly connected subgraphs. It permutes the rows and columns of the original matrix A

and obtains a block triangular preconditioning matrix containing a subset of the nonzeros of A

where the maximum size of a diagonal block is smaller than a desired value.

Let G = (V, E) be a strongly connected digraph with n vertices and m weighted edges. A
hierarchical decomposition of G into its strong subgraphs can be defined in the following way.
Let σ0 be a permutation of the edges. For 1 ≤ i ≤ m, let σ0(i) be the ith edge in σ0. Let
G0 = (V, ∅) be the graph obtained by removing all the edges from G. Consider that edges are
added one by one to G0 in the order determined by σ0. Let Gi = (V, {σ(j) : 1 ≤ j ≤ i}) be
the digraph obtained after the addition of the first i edges. Initially in G0, there are n strong
subgraphs, one for each vertex, and, during the edge addition process, these strong components
gradually coalesce until there is only one. The hierarchical decomposition of G into its strong
components with respect to the edge permutation σ0 shows which strong components are formed
in this process hierarchically. Note that a strong component in the edge addition process is
indeed a strong component of some digraph Gi although it is only a strong subgraph of G.
More explanation by diagrams can be seen in our report [2].

Given a digraph G = (V, E) and a permutation σ0, the hierarchical decomposition of G can
be obtained by first constructing G0 and executing Tarjan’s strong component algorithm (SCC)
for each internal digraph Gi obtained during the edge addition process. This would be an
O(mn + m2) algorithm since 1 ≤ i ≤ m and the cost of SCC is O(n + m). It would thus
be prohibitive for large graphs. To find the decomposition in a more efficient way, Tarjan
first proposed a recursive algorithm of complexity O(mlog2 n) that he later improved to have
complexity O(m log n) [4].

Note that there is a one to one correspondence between the blocks in a block triangular form of
an n × n matrix with m nonzeros and the strong components of its associated digraph with n

vertices and m weighted edges. The proposed method uses Tarjan’s hierarchical decomposition
algorithm to remove some edges with relatively small weights and obtain a reduced digraph
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whose associated matrix can be permuted into a block triangular form such that the dimension
of each block is smaller than a desired value.

The first step in our proposed algorithm for creating M is a modified version of Tarjan’s
algorithm, HD. Our first modification allows us to have non-distinct edge weights, that is matrices
with the same value in different positions. Another modification to the HD algorithm is that
we do not want to accept any blocks larger than a predefined value, mbs, and this enables us
to stop the recursion earlier than in the original algorithm. We use this modified algorithm
to obtain a block triangular matrix M where the strong components correspond to the blocks
on the diagonal of M. To the best of our knowledge, this is the first work that uses Tarjan’s
algorithm for preconditioning purposes. After we obtain the block triangular form from this
modified HD we then see whether any blocks can be merged and finally use a greedy algorithm
to order the blocks on the diagonal so that most of the entries are in the upper triangular part.
Figure 1 shows a sample matrix and the preconditioner obtained by our algorithm, SCPRE.

The main parameters of our algorithm are the ordering σ0 and the largest block size mbs. Before
we use algorithm HD we first scale and permute the matrix using MC64 [1], which we do also for
our experiments on other preconditioners.

Figure 1: Matrix mult dcop 01 (on the left) and the preconditioner obtained by the algorithm
SCPRE (on the right) with mbs = 250.

We compare our algorithm SCPRE with another block preconditioner XPABLO [3] and a version
of the industry-standard ILUT from MATLAB, on sets of matrices from circuit (left half) and
device (right half) simulations from the University of Florida sparse matrix collection. We
show below a very abbreviated table from the results in [2]. In the table we give the number of
iterations (with the least in bold font) and in the second line for each matrix, the relative memory
requirement (ratio of storage for preconditioners to that for the original matrix). Although this
is a much reduced set from our technical report, the results are representative in the sense that
the conclusions from this set match those from the larger set. For this set of experiments, we
use mbs = 1000.
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Matrix XPABLO ILUT SCPRE Matrix XPABLO ILUT SCPRE

G2 circuit 727 89 642 2D 27628 bjtcai 45 - 142
1.77 5.47 2.23 1.85 2.58 2.22

circuit 3 572 3 14 3D 28984 Tetra 232 - 98

1.25 2.16 1.40 2.82 1.98 2.65

bcircuit - 238 16 ibm matrix 2 23 - 13

1.32 1.10 1.38 5.39 23.24 5.12

ckt11752 dc 1 - 11 213 matrix 9 182 - 205
1.02 2.55 1.32 4.96 37.32 2.27

mult dcop 01 12 6 1 wang3 100 20 79
1.04 22.48 0.86 2.42 8.02 3.85

ASIC 100k 5 5 5 ecl32 87 15 34
0.69 8.27 0.81 5.71 12.23 5.74

For circuit simulation problems, ILUT and SCPRE converge for all matrices in this set. XPABLO

fails to converge for bcircuit and ckt11752 dc 1 and so SCPRE is clearly the best block based
preconditioner on this set of matrices. Although ILUT requires significantly fewer iterations on
G2 circuit and ckt11752 dc 1, in both cases it requires more memory. However, for G2 circuit,
if we increase mbs to 5000, the number of iterations drops to 95 and our relative memory
requirement increases to 6.10 and, for ckt11752 dc 1, by increasing mbs to only 3000 we require
only 11 iterations with a relative memory cost of only 1.45. Thus we feel we can we recommend
using SCPRE for circuit simulation matrices especially when the amount of memory to store the
preconditioner is the main concern.

For the device simulation matrices in the right-hand side of the table, the block based precondi-
tioners are far more robust on this set with convergence for all the test matrices. We therefore
feel that we can recommend SCPRE as the preconditioner for the device simulation matrices.

To balance these excellent results, we show in our paper [2] that ILUT outperforms both block
approaches on matrices from CFD applications. Further research is needed to understand the
effect of structure in determining the best approach.
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